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A B S T R A C T

Predicting how plant invasions influence decomposition processes is difficult, as multiple factors change with
plant community alteration. Here, we examined the importance of various abiotic and biotic factors (litter
quality (C:N), UV radiation, and macroinvertebrate access) in driving early decomposition processes in native
California sage scrub (CSS) and in adjacent non-native grassland habitats. Many findings from our experiment
were consistent with studies from semi-arid regions (e.g., UV radiation drove decomposition processes and high
quality litter decayed more rapidly). However, the acceleration of litter decomposition in the non-native
grassland relative to native California sage scrub (CSS) was unexpected and contrasts with studies of partially
invaded CSS systems. Our results highlight that studies of invaded systems that still retain native species di-
versity should not be extrapolated to type-converted systems. We hypothesize that high grass cover in the type-
converted grassland created conditions that enhanced soil moisture, bacterial abundance, and macroinvertebrate
influence relative to the CSS, accelerating decomposition and reducing regional C storage.

Invasive plant species have the potential to drive global environ-
mental change through their effects on productivity, microbial com-
munities, and nutrient pools (Vitousek et al., 1997; Ehrenfeld, 2003).
Since multiple factors that drive ecosystem function change with al-
teration of plant community composition, it is difficult to forecast how
landscape transformations associated with invasions influence im-
portant ecosystem processes (Hooper and Vitousek, 1998; Kourtev
et al., 2002). For example, many key drivers of litter decomposition
[e.g., litter quality (Cornwell et al., 2008), UV radiation exposure
(Austin and Vivanco, 2006), invertebrate community (Hättenschwiler
et al., 2005)], an important ecosystem process responsible for sub-
stantial fluxes of carbon dioxide to the atmosphere, often differ between
native and invaded habitats (Mayer et al., 2005; Wolkovich et al.,
2010).

A notable example of widespread invasion is the expansion of an-
nual Eurasian grasses, such as Bromus and Avena spp., into the shrub-
lands of southern California. These non-native annual grasses represent
a distinctly different functional type than the shrub species (e.g.,
Artemisia californica and Salvia spp.) that typify the native California
sage scrub (hereafter, CSS) ecosystem (Rundel, 2007). CSS has been
reduced to< 10% of its original distribution (Noss et al., 1995), and
many natural areas have been type-converted to non-native grasslands
(Cox et al., 2014; Riordan and Rundel, 2014; Talluto and Suding, 2008).

Complicating our understanding of how grass invasions influence eco-
system function in CSS, previous studies comparing decomposition and
carbon storage in intact CSS to either CSS with non-native grass in-
cursion or type-converted grasslands found different patterns. For ex-
ample, Wolkovich et al. (2010) found that invasion of non-native
grasses into CSS slows litter decomposition rates and enhances C sto-
rage. However, conclusions stem from an experimental design that
doubled the amount of naturally occurring grass litter into experimental
plots. Conversely, comparative studies by Wheeler et al. (2016) and
Caspi et al. (2018, 2019) found that type-converted grasslands store less
C than CSS habitats. To examine how type conversion of CSS to a non-
native grassland influences decomposition, we manipulated three fac-
tors in both habitats—leaf litter type, UV radiation, and macro-
invertebrate access—and measured decay for seven months.

This study was conducted at the Robert J. Bernard Biological Field
Station (BFS) in Claremont, California (N 34.1°, W −117.7°), which
harbors intact CSS (~25 ha) and a non-native grassland (~3.5 ha)
consisting predominantly (> 95% cover) of annual European grasses
(Bromus spp.). Soil abiotic properties, excluding pH which is lower in
CSS, do not differ among habitat types (Wheeler et al., 2016; Caspi
et al., 2019). Leaf samples from eight common plant species were
analyzed for C and N content. Bromus diandrus, the dominant non-na-
tive grass species, had higher C:N values than the seven native CSS
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plants sampled (Table 1). Based on assessment of C:N and consideration
of the feasibility of retaining litter within the mesh of litterbags, Ribes
aureum was selected to typify CSS in the decomposition experiment.

To examine decomposition processes in the two habitats, 768 litter
boxes were constructed using 2.0-mm mesh and plastic produce boxes
(11.4×9.5×6.6 cm) for 3-dimensional structure (Fig. 1). Litter boxes
were assigned to treatments in a 2×2×2 factorial design. Litter
treatments consisted of R. aureum and B. diandrus leaves, our high and
low litter quality treatments, respectively (Table 1). UV treatments
consisted of a UV allowed treatment, and a UV blocked treatment with
a Gila® UV-blocking window screening covering that blocked 97% of
the UV in the 250 to 400 nm range. Conditions within UV treatments
varied by<1 °C and 1% relative humidity with large fluctuations due
to microhabitat. Macroinvertebrate treatments consisted of a macro-
invertebrate excluded and a macroinvertebrate allowed treatment, with
two 2×2 cm holes in the screening to allow access (see Meyer et al.,
2011; Fig. 1).

Litter boxes (64 at each site; 8 replicates per treatment type) were
deployed on the natural litter layer ~0.1 m apart at six undisturbed
sites in CSS, and six in the grassland in July 2014. CSS sites were se-
parated by at least 50m to maintain heterogeneity in both plant com-
munity composition and abiotic conditions among the sites. Non-native
grassland sites were systematically placed (~40m apart) across grass-
land portion of the BFS. In the grassland, litter boxes were placed in
systematic rows, and in the CSS, they were placed randomly throughout
the site to minimize impact but make sure the bags were contacted the
soil surface, which involved placement in interspaces and below ex-
isting shrubs. Two litter boxes of each treatment were collected at all
sites in October (late summer) and December 2014 (fall), and the re-
maining four were collected in February 2015 (winter) (due to concerns
that grasses growing through the boxes would begin to decompose and
be indistinguishable from experimental litter samples). Following col-
lection, litter samples were dried (50 °C, 72 h), weighed to the nearest
0.01 g, and ground on a Whiley Mill™. Subsamples were ashed in a
muffle furnace (500 °C, 4 h) to determine ash-free dry mass, and others
were analyzed in the Elementar varioCUBE Elemental Analyzer to

obtain C and N concentrations. Decomposition data was fitted to a
linear decay model (Mt=M0− kt, where Mt is the litter mass at time t
and M0 is the initial litter mass) to calculate decomposition rate con-
stants (k, y−1). To identify differences in litter decomposition rates, a
four factorial PERMANOVA was run using PRIMER-E with the PERM-
ANOVA+ add on (Anderson et al., 2008) that included the factors litter
type, UV treatment, invertebrate treatment, and site nested within ha-
bitat. A PERMANOVA is a permutation based analysis that does not
require assumptions of equal variance or a normal distribution
(Anderson et al., 2008). All PERMANOVA tests used a resemblance
matrix constructed using Euclidean distances.

Our study underscores the difficulty associated with predicting how
invasions impact key ecosystem processes. Many of our findings were
consistent with studies from semi-arid regions (Fig. 2; Supplementary
File 1): (1) UV radiation was the primary determinant of decomposition
rates, with treatments that allowed UV penetration increasing decom-
position rates by an average of 32% (Austin and Vivanco, 2006; Brandt
et al., 2010); (2) high quality (low C:N) R. aureum litter decayed 5%
more rapidly than the low quality grass litter, B. diandrus (Cornwell
et al., 2008); and (3) macroinvertebrates did not significantly alter
overall decomposition rates (Wall et al., 2010). However, significant
litter x invertebrate and invertebrate x habitat interactions do suggest
that the impact of invertebrates depends on ecological context (high
nutrient litter and grasslands support invertebrate decomposer com-
munities). Also, Meyer et al. (2011) highlights that invertebrates play a
larger role later (after 6 mo.) in the decomposition process. However,
accelerated litter decomposition by 26% in the non-native grassland
relative to the CSS was unexpected and modified by a strong habitat x
UV interaction (Figs. 2; 3a). Leaf litter is expected to decompose more
rapidly in more nutrient-rich soils and litter (Vitousek, 2004), but stu-
dies at regional sites, including ours, have found that native sage scrub
soils contain more C an N than non-native Bromus-dominated grass-
lands (Wheeler et al., 2016; Caspi et al., 2019). In addition, Wolkovich
et al. (2010) suggest that incursion of grasses with lower litter quality
into CSS slows decomposition.

By testing multiple factors that influence decomposition processes
across seasonal periods, our study provides insights into what may be
driving the differences between habitats. The influence of UV was re-
lated to habitat (Supplementary File 1), and blocking UV radiation
slowed decomposition to a greater degree in CSS than in the non-native
grassland (Fig. 3a). UV radiation is less likely to penetrate dense live
grasses in late fall and winter. Therefore, the positive UV effect seen in
the grassland is less likely the result of direct organic matter miner-
alization by photodegradation in the summer (Lin and King, 2014).
Instead, it may be due to photopriming, whereby UV makes recalcitrant
litter more susceptible to microbial breakdown under cooler and wetter
conditions in winter and spring (Foereid et al., 2010; Baker and Allison,
2015). In CSS, UV radiation exposure is still high in the fall and winter,
as cover of annuals is minimal relative to the grassland. As such, we
hypothesize that thick grass cover in the grassland in the fall and winter
increases soil surface moisture (Wolkovich et al., 2009) and enhances
decomposer activity by diminishing UV exposure (Duguay and

Table 1
C:N ratios for the most abundant plant species at the BFS in the CSS and
grassland habitat types. Species used in this study are in bold.

Litter type C:N (± SEM)

R. aureum (golden currant)a 13.02 ± 0.51a

Bromus spp. (European grasses)a 60.88 ± 4.79a

A. californica (California sagebrush) 18.31 ± 1.05
E. crassifolium (yerba santa) 21.32 ± 2.56
E. fasciculatum (buckwheat) 33.93 ± 3.74
S. apiana (white sage) 25.56 ± 1.31
E. pinifolia (pinebush) 22.14 ± 2.15
S. mexicana (blue elderberry) 10.42 ± 0.74

a Selected for decomposition experiment. Litter used to construct the litter
boxes differed slightly in C:N content.

Fig. 1. Pictures of litter boxes: (a) a lit-
terbox with Ribes aureum litter, holes for
macroinvertebrate access, and Gila® UV-
blocking window screening to reduce UV
radiation exposure; and (b) part of a CSS
site with 2 litterboxes that allow UV radia-
tion to penetrate (mesh only) and 3 litter-
boxes from the UV-blocked treatment
(mesh+black covers). (Photos by M.
Dipman). Strawberry boxes were used to
provide 3-dimensional structure and were
covered with 2.0-mm mesh, allowing air-
flow and providing opportunities for in-
vertebrate access.
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Klironomos, 2000; Johnson, 2003; King et al., 2012), accelerating de-
composition processes relative to the drier, more exposed CSS. Higher
concentrations of active bacteria in the grassland (Table 2) and a
greater impact of macroinvertebrates on decomposition in the grassland
(Fig. 3b) are congruent with this hypothesis.

Predicting how plant invasions influence decomposition processes is
difficult, as multiple factors change with plant community alteration
and stage of invasion. For example, CSS invaded by non-native grasses
and type-converted grasslands function differently (Wheeler et al.,
2016), and results from studies of partially invaded systems should not
be extrapolated to type-converted systems. Here, we found that de-
composition rates increased in the non-native grassland, despite the fact
that the invader produced lower quality (higher C:N) litter. We think
the high grass cover created conditions that enhanced soil moisture,
bacterial abundance, and macroinvertebrate influence, accelerating
decomposition. This study was conducted in 2014 and 2015 in the
middle of an extreme drought. As such, decomposition rates in these
habitats during high rainfall years are untested, though we hypothesize
that decomposition would remain enhanced in the grassland habitat

Fig. 2. Average fraction of leaf litter mass remaining for the eight treatments placed in the grassland and sage scrub habitat types. Bars represent standard error of the
mean.

Fig. 3. Interaction of (a) habitat type and UV radiation and (b) habitat type and macroinvertebrates for overall decomposition rates. Bars represent standard error of
the mean.

Table 2
Microbial analyses (μg/g of biomass) of soil from CSS and grassland habitats.
Soil samples were collected in March 2015 by taking cores at study sites in the
grassland and CSS. Samples were homogenized and sent to Earthfort Labs
(Corvallis, OR) for direct count microscopy. Significant (p < 0.05) differences
are in bold.

Measure Grassland
(± SEM)

CSS (± SEM) t p

Active bacteria 30.0 ± 2.23 16.7 ± 2.92 3.68 0.005
Total bacteria 175 ± 19.9 207 ± 24.1 −1.02 0.334
Active fungi 2.74 ± 0.46 1.95 ± 0.43 1.21 0.257
Total fungi 290 ± 30.1 308 ± 31.3 −0.40 0.698
Total fungi: total

bacteria
1.69 ± 0.15 1.66 ± 0.39 0.08 0.937

Active bacteria: total
bacteria

0.18 ± 0.022 0.084 ± 0.016 3.47 0.007

Active fungi: total fungi 0.01 ± 0.002 0.006 ± 0.002 1.15 0.279
Active fungi: active

bacteria
0.09 ± 0.02 0.1 ± 0.04 −0.90 0.391
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relative to CSS, as grasses would grow taller increasing moisture re-
tention. Since habitat type modified the impact of these individual
factors through various interactions, type conversion may have com-
plex, unexpected ramifications for nutrient cycling. Type conversion of
CSS to non-native grasslands is expected to become more pervasive
with climate change and continued disturbance (Talluto and Suding,
2008), which, in accordance with our findings, has the potential to
reduce regional C storage (Supplementary File 2).

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.apsoil.2019.07.005.
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